

Annexure AAB-CD-01

FORMAT FOR COURSE CURRICULUM

Course Title: Biomolecules Course Code: 101 Credit Units: 2

L	Т	P/S	Lab	TOTAL CREDIT UNITS
2				2

Course Objectives:

<u>Theory:</u> The course provides fundamental knowledge of structure and functions of major bio-molecules of the living system.

Pre-requisites: Basic knowledge of biology and chemistry.

Student Learning Outcomes:

- Attain knowledge of structure, composition and functions of biomolecules.
- Students will learn how biomolecules acquire astonishing properties.
- Students will be able compare the properties of different biomolecules.

Course Contents/Syllabus- Theory:

	Weightage (%)
Module I: Carbohydrates: Structure and functions	25
Descriptors/Topics: Structure, properties and functions of: Monosaccharides (glucose,	
fructose, riobose and others, D-and L- sugars, reducing and non-reducing sugars),	
Disaccharides (maltose, sucrose and lactose) and polysaccharides (Starch and glycogen)	
Module II Proteins and Enzymes	30
Descriptors/Topics: Structures and properties of 20 amino acids. Chemical properties	
of peptide bond. Primary, secondary (alpha helix and beta pleated sheet), tertiary	
and quaternary structure of proteins.	
Enzymes: structure and properties, apoenzymes, prosthetic groups [cofactors	
(metal ions) and co-enzymes. Mechanism of enzyme action: Lock and Key model	
and Induced Fit hypothesis.	
Module III Fatty acids and Lipids	25
Descriptors/Topics: Structure and properties of the fatty acids (Saponification, acid	
values and iodine number). Triacylglycerols, phospholoipids and derivatives viz.,	
phosphoglycerides; lacithins, cephalins, plasmogens, phosphatidyl inositol, sphingomylin,	
glycolipds (cerebrosides and gangliosides) and cholesterol.	
Module IV Proteins and nucleic acids	20
Descriptors/Topics: Structure of nucleotides and nucleosides, nitrogenous bases.	
Chemical structures of DNA (Watson-Crick Model) and RNA. Significance of DNA and	
RNA.	

Pedagogy for Course Delivery:

Lectures: 27 Tutorial: 0 Assignment: 1 Class Test: 2 Total: 30

Assessment/ Examination Scheme:

Theory L/T (%)	Lab/Practical/Studio (%)	End Term Examination
100	NA	100

Theory Assessment (L&T):

	End Term Examination						
Components	Class Test	Class Test Home Assignment		Attendance			
(Drop down)	1	2					
Weightage (%)	10	10	5	5	70		

Lab/ Practical/ Studio Assessment: NA

	Continuous Assessment/Internal Assessment				End Term Examination			Total
Components	Performance	Lab	viva	Attendance	Lab	Performance	Viva	
(Drop down		record			record			
Weightage								
(%)								

Text & References:

- Biochemistry by Todd, W. B., Mason, M., Bruggen, R. V. & Macmillan.
 Principals of Biochemistry 6th Edition by David L. Nelson, Michael M. Cox
- 3. Biochemistry 2ed by Strayer
- Introductory Practical Biochemistry by S.K. Sawhney and R. Singh, 2nd Edition, Alpha Science International, 4. 2005.
- 5. An Introduction to Practical Biochemistry by David Plummer, 3rd Edition, Tata Mcgraw Hill Education (2006).

Any other Study Material: